Nuclear import of hTERT requires a bipartite nuclear localization signal and Akt-mediated phosphorylation.

نویسندگان

  • Jeeyun Chung
  • Prabhat Khadka
  • In Kwon Chung
چکیده

Sustained cell proliferation requires telomerase to maintain functional telomeres that are essential for chromosome integrity and protection. Although nuclear import of telomerase transcriptase (hTERT) is required for telomerase activity to elongate telomeres in vivo, the molecular mechanism regulating nuclear localization of hTERT is unclear. We have identified a bipartite nuclear localization signal (NLS; amino acid residues 222-240) that is responsible for nuclear import of hTERT. Immunofluorescence imaging of hTERT revealed that mutations in any of the bipartite NLS sequences result in decreased nuclear fluorescence intensity compared with wild-type hTERT. We also show that Akt-mediated phosphorylation at serine 227 is necessary for directing nuclear translocation of hTERT. Interestingly, serine 227 is located between two clusters of basic amino acids in the bipartite NLS. Inactivation of Akt activity by a dominant-negative mutant or wortmannin treatment attenuated nuclear localization of hTERT. We further show that both bipartite NLS and serine 227 in hTERT are required for cell immortalization of normal human foreskin fibroblast cells. Taken together, our findings reveal a previously unknown regulatory mechanism for nuclear import of hTERT through a bipartite NLS mediated by Akt phosphorylation, which represents an alternative pathway for modulating telomerase activity in cancer.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Akt-mediated phosphorylation increases the binding affinity of hTERT for importin α to promote nuclear translocation.

Telomeres are essential for chromosome integrity and protection, and their maintenance requires the ribonucleoprotein enzyme telomerase. Previously, we have shown that human telomerase reverse transcriptase (hTERT) contains a bipartite nuclear localization signal (NLS; residues 222-240) that is responsible for nuclear import, and that Akt-mediated phosphorylation of residue S227 is important fo...

متن کامل

Importin 7 and Nup358 Promote Nuclear Import of the Protein Component of Human Telomerase

In actively dividing eukaryotic cells, chromosome ends (telomeres) are subject to progressive shortening, unless they are maintained by the action of telomerase, a dedicated enzyme that adds DNA sequence repeats to chromosomal 3'end. For its enzymatic function on telomeres, telomerase requires nuclear import of its protein component (hTERT in human cells) and assembly with the RNA component, TE...

متن کامل

Androgen induces a switch from cytoplasmic retention to nuclear import of the androgen receptor.

The androgen receptor (AR) has critical functions as a transcription factor in both normal and cancer cells, but the specific mechanisms that regulate its nuclear localization are not well defined. We found that an AR mutation commonly reported in prostate cancer generates an androgen-independent gain of function for nuclear import. The substitution, Thr877Ala, is within the ligand-binding doma...

متن کامل

Bipartite Nuclear Localization Signal Controls Nuclear Import and DNA-Binding Activity of IFN Regulatory Factor 3.

Accurate cellular localization plays a crucial role in the effective function of most signaling proteins, and nuclear trafficking is central to the function of transcription factors. IFN regulatory factor (IRF)3 is a master transcription factor responsible for the induction of type I IFN, which plays a crucial role in host antiviral innate immune responses. However, the mechanisms for control a...

متن کامل

Nuclear-cytoplasmic partitioning of phosphatase and tensin homologue deleted on chromosome 10 (PTEN) differentially regulates the cell cycle and apoptosis.

Phosphatase and tensin homologue deleted on chromosome 10 (PTEN), a tumor suppressor phosphatase that dephosphorylates both protein and lipid substrates, is found to be mutated in both heritable and sporadic breast cancer. Cellular PTEN has been shown to regulate Akt phosphorylation, mitogen-activated protein kinase (MAPK) phosphorylation, p27(kip1), and cyclin D1 protein levels. Additionally, ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of cell science

دوره 125 Pt 11  شماره 

صفحات  -

تاریخ انتشار 2012